An Improved Vulnerability Exploitation Prediction Model with Novel Cost Function and Custom Trained Word Vector Embedding
نویسندگان
چکیده
منابع مشابه
Cluster-Driven Model for Improved Word and Text Embedding
Most of the existing word embedding models only consider the relationships between words and their local contexts (e.g. ten words around the target word). However, information beyond local contexts (global contexts), which reflect the rich semantic meanings of words, are usually ignored. In this paper, we present a general framework for utilizing global information to learn word and text repres...
متن کاملAn integrated production-marketing planning model With Cubic production cost function and imperfect production process
The basic assumption in the traditional inventory model is that all outputs are perfect items. However, this assumption is too simplistic in the most real-life situations due to a natural phenomenon in a production process. From this it is deduced that the system produces non-perfects items which can be classified into four groups of perfect, imperfect, reworkable defective and non-reworkable d...
متن کاملImproved Answer Selection with Pre-Trained Word Embeddings
is paper evaluates existing and newly proposed answer selection methods based on pre-trained word embeddings. Word embeddings are highly effective in various natural language processing tasks and their integration into traditional information retrieval (IR) systems allows for the capture of semantic relatedness between questions and answers. Empirical results on three publicly available data s...
متن کاملAn Improved Crowdsourcing Based Evaluation Technique for Word Embedding Methods
In this proposal track paper, we have presented a crowdsourcing-based word embedding evaluation technique that will be more reliable and linguistically justified. The method is designed for intrinsic evaluation and extends the approach proposed in (Schnabel et al., 2015). Our improved evaluation technique captures word relatedness based on the word context.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2021
ISSN: 1424-8220
DOI: 10.3390/s21124220